服務(wù)熱線
13391005955
產(chǎn)品中心
當(dāng)前位置:首頁產(chǎn)品中心超臨界流體反應(yīng)裝置超臨界氣凝膠干燥XT 200 CO2超臨界氣凝膠干燥儀
產(chǎn)品型號:XT 200 CO2
更新時間:2024-08-20
廠商性質(zhì):生產(chǎn)廠家
訪問量:3337
400 0889 890
產(chǎn)品分類
PRODUCT CLASSIFICATION相關(guān)文章
RELATED ARTICLES品牌 | KTIMES/捷鈦儀器 | 萃取范圍 | 100ml-290000ml |
---|---|---|---|
最大壓力 | 40MPabar | 萃取體積 | 29L |
通道數(shù) | 5 | 最高溫度 | 160℃ |
產(chǎn)地類別 | 國產(chǎn) | 價格區(qū)間 | 面議 |
應(yīng)用領(lǐng)域 | 環(huán)保,化工,生物產(chǎn)業(yè),航天,制藥 |
超臨界氣凝膠干燥儀
一、什么是氣凝膠
它是一種固體相和孔隙結(jié)構(gòu)均為納米量級的無機非晶體多孔材料。
具有連續(xù)無規(guī)則的開放納米網(wǎng)絡(luò)結(jié)構(gòu),孔隙率高達(dá)80%~99.8%。
多孔納米結(jié)構(gòu)使得它在宏觀上表現(xiàn)出納米材料*的界面效應(yīng)和小尺寸效應(yīng),
同時具有低折射率、低介電常數(shù)、低傳聲速度、 低傳熱系數(shù)等優(yōu)異的性質(zhì)。
材料以其優(yōu)異的結(jié)構(gòu)性能在隔熱隔聲材料、催化劑及催化劑載體材料、廢氣吸附材料、
光學(xué)材料等等諸多其他領(lǐng)域都有著非常廣泛的應(yīng)用。
二、成型過程
溶膠→凝膠→凝膠老化→干燥。
前體溶液在催化劑的作用下形成膠體粒子分散在溶劑中→溶膠。
溶膠中的膠體粒子經(jīng)聚集縮合的凝膠過程形成無序交聯(lián)具有空間三維網(wǎng)絡(luò)結(jié)構(gòu)的濕凝膠;
剛成形的濕凝膠,三維結(jié)構(gòu)強度不夠,很容易破碎斷裂,故需在母液中老化一定時間。
老化時,凝膠內(nèi)部和表面尚未反應(yīng)的官能團(tuán)(羥基、羧基、醚鍵、醛基、羰基等)會進(jìn)一步縮合,使得所制備的凝膠的強度提高;
老化后,再干燥,不能破壞凝膠結(jié)構(gòu),使納米量級孔結(jié)構(gòu)中的溶劑被帶走清除,得到高孔隙率、低密度的多孔固體材料:
濕溶膠→氣凝膠(帶很多氣孔的輕質(zhì)固定材料)。
三、干燥方法
在濕凝膠成為氣凝膠的過程中,凝膠結(jié)構(gòu)要承受巨大的干燥應(yīng)力,這種應(yīng)力會使凝膠結(jié)構(gòu)持續(xù)的收縮和開裂,導(dǎo)致結(jié)構(gòu)塌陷。
干燥應(yīng)力主要來自于毛細(xì)力(主要壓力)、滲透壓力、分離壓力等。
(備注:毛細(xì)力,產(chǎn)生是在三相界面上內(nèi)彎液面引起----液面彎曲產(chǎn)生的。毛細(xì)力的方向:作用方向始終指向彎曲液面的凹面(凹凸彎液面是指相對于液相一側(cè)言的)。
濕凝膠干燥過程中,溶劑的揮發(fā),孔道中的固液相界面向高能的固氣相界面轉(zhuǎn)變,形成彎月面,毛細(xì)力產(chǎn)生;
在凝膠微孔結(jié)構(gòu)中,由于孔道半徑為納米量級,其承受的毛細(xì)力非常大。
凝膠結(jié)構(gòu)中孔徑大小并不均一,不同孔道承受的毛細(xì)力不同;溶劑揮發(fā)的毛細(xì)力從凝膠表面到凝膠內(nèi)部產(chǎn)生巨大梯度,
導(dǎo)致凝膠結(jié)構(gòu)受力不均,造成凝膠結(jié)構(gòu)的塌陷(凝膠結(jié)構(gòu)會出現(xiàn)較大的收縮甚至開裂),最終得不到結(jié)構(gòu)理想的氣凝膠。
影響干燥應(yīng)力的主要因素包括:
凝膠結(jié)構(gòu)的強度、
凝膠的孔徑大小與均一度、
凝膠內(nèi)溶劑的表面張力、
溶劑與凝膠結(jié)構(gòu)表面的接觸角等。
可以調(diào)節(jié)各類因素有效控制干燥應(yīng)力對凝膠結(jié)構(gòu)的破壞程度,提高成功概率及生產(chǎn)效率。
常規(guī)干燥方法:
超臨界干燥
在高于臨界溫度和壓力的條件下,凝膠中的溶劑被替換成特定的超臨界流體,
再通過先降壓再降溫的方式將凝膠孔徑中的超臨界流體轉(zhuǎn)化為氣體,得到干燥氣凝膠。
原理:液-超臨界相變和超臨界-氣相變替換了常規(guī)方法中的液-氣相變,有效避免了在液-氣相變中產(chǎn)生的干燥應(yīng)力。
超臨界干燥方法:
1、
高溫超臨界干燥:事例:硅氣凝膠干燥。
用甲醇等有機溶劑作為超臨界流體。
達(dá)到超臨界條件時,高溫導(dǎo)致硅凝膠結(jié)構(gòu)表面為反應(yīng)性的—OH基團(tuán)與有機溶劑(如甲醇)發(fā)生二次酯化反應(yīng),
親水性的—OH 被取代為疏水性的烷基基團(tuán)。
得到的氣凝膠在空氣中不會因吸收水分而導(dǎo)致結(jié)構(gòu)開裂,穩(wěn)定性強。
弊端:在高溫高壓條件,易燃的有機溶劑作為超臨界流體,使得實驗過程相對危險,對于相關(guān)設(shè)備要求苛刻。
2、低溫超臨界干燥
二氧化碳作為超臨界流體,通過低溫超臨界干燥制備出了硅氣凝膠。
臨界溫度非常容易達(dá)到的二氧化碳成為了低溫超臨界干燥中常采用的流體,
其較低的臨界溫度(31℃)和臨界壓力(7.39MPa)以及二氧化碳的無毒和不易燃等特性使得低溫超臨界干燥技術(shù)更加安全。
弊端:CO2與水的相容性較差,必須先對濕凝膠進(jìn)行水-乙醇置換,后由二氧化碳置換凝膠中的乙醇,經(jīng)過干燥得到氣凝膠。
用二氧化碳低溫超臨界干燥方法得到的硅氣凝膠不具有疏水性,
得到的氣凝膠表面具有親水性—OH基團(tuán)(故需要密閉存放,此方法得到的材料應(yīng)用在干燥的環(huán)境中)。
3、方法對比:
二氧化碳超臨界干燥得到的硅氣凝膠比在甲醇超臨界干燥得到的硅氣凝膠結(jié)構(gòu)中的微孔率更高。
可能是甲醇的臨界溫度和壓力較高,加快了凝膠的老化(或部分孔隙的塌陷),使得凝膠結(jié)構(gòu)變粗,孔隙率降低。
冷凍干燥
冷凍干燥是通過避免液-氣相界面在干燥過程中的毛細(xì)壓力來實現(xiàn)凝膠干燥的方法。
這種方法要求凝膠中的溶劑必須具有較低的擴散系數(shù)和較高的升華壓強。
溶劑在凝膠孔道中先被冷凍,然后再在真空條件下升華成為氣態(tài),得到干燥的氣凝膠。
冷凍干燥方法對于凝膠的結(jié)構(gòu)強度要求較高,需要對凝膠進(jìn)行較長時間的老化以獲得足夠高的強度。
但是仍然會出現(xiàn)由于凝膠孔道中溶劑冷凍結(jié)晶而導(dǎo)致凝膠孔結(jié)構(gòu)塌陷,故冷凍干燥方法沒有普用性。
4、常壓干燥
常壓干燥取決于凝膠的骨架結(jié)構(gòu)強度、凝膠結(jié)構(gòu)均一度、凝膠內(nèi)溶劑的表面張力和凝膠表面的接觸角,
必須調(diào)節(jié)控制降低干燥應(yīng)力。
可能性的調(diào)節(jié)過程:
通過控制溶膠-凝膠過程和老化過程來提高凝膠結(jié)構(gòu)強度和均一度,
通過表面改性或選擇合適的前驅(qū)體來調(diào)節(jié)凝膠表面接觸角,選表面張力較小的溶劑。
表面改性和置換表面張力較小的溶劑是常壓干燥中主要的步驟。
表面改性的方法兩種:
一種是共前驅(qū)體法,即將改性劑與硅溶膠混合,改性劑也作為反應(yīng)單體與硅溶膠一起發(fā)生聚合反應(yīng)得到具有疏水特性的凝膠結(jié)構(gòu);
一種為凝膠后對凝膠表面進(jìn)行改性。以有機硅為原料的硅氣凝膠制備通常用的一種方法。
以無機硅為硅源形成的硅氣凝膠材料通常采用第二種改性方法,
即將二氧化硅顆粒表面的Si-OH基團(tuán)烷基化為Si-R基團(tuán),得到具有表面疏水特性的凝膠。
由于凝膠表面的烷基化需要在有機溶劑中進(jìn)行,在表面烷基化改性時,還需要對凝膠進(jìn)行漫長的透析和溶劑置換。
四、應(yīng)用分析
用超臨界干燥法制備的材料,才是真正意義上的氣凝膠,而常壓干燥或冷凍干燥法制備的材料只能算“類氣凝膠"材料。
超臨界氣凝膠干燥儀
型號:XT2000 CC
設(shè)計體積:200ml--25L
設(shè)計壓力:10Mpa~100Mpa
設(shè)計溫度:-40℃~450℃
主要配置:
主超臨界腔體
增壓系統(tǒng)
壓力安全控制器PSE(軟件控制)
恒溫恒壓排氣系統(tǒng)
(避免巨大的壓降導(dǎo)致空隙塌陷,及溫度的下降導(dǎo)致的干燥不充分)
含氣液分離,冷凝,回收等
防爆設(shè)計:有機干燥
非防爆設(shè)計 :CO2干燥
加熱溫度控制系統(tǒng)
程序化工作站平臺
升降平臺(可選)